

From Internet to ... Active Net

Dr. David Tennenhouse Information Technology Office

OUTLINE

- Where are we going?
- What are the issues / drivers?
- How do we get there?

VOICE/DATA TRANSITION MODEL

3

A VOICE/DATA TRANSITION MODEL

Assume a backbone network supporting: voice services based on traditional circuit switching, growing in their capacity demand at a constant annual rate r_v ; and a suite of data services based on packet switching, growing at a different constant rate r_d .

■Define the following quantities of interest:

- t_I, the lead-user point; Packet-data traffic is 10% of the total capacity.
- t_c, the crossover point; Both types of service require the same capacity.
- ter the eclipse point; Packet-data traffic consumes 90% of the overall backbone capacity.
- t_{c} t_{l} , Interval from the lead-user point to the crossover point.
- $t_{\mbox{\scriptsize e^-}}\,t_{\mbox{\scriptsize c}},$ Interval from the crossover point to the eclipse point.

TRANSITION MODEL "RESULTS"

"RESULTS" (based on Two POPs)

Industry-wide model results

t _l	t _c	t _e	t _c -t _l	t _e -t _c	$\mathbf{r}_{\mathbf{v}}$	r_d	α(1996)
1988	Nov 1998	2007	10 yrs	9 yrs	0.38	0.69	1.97

Idle voice scenario

t _l	t_{c}	t _e	t_c - t_1	t _e -t _c	\mathbf{r}_{v}	r_d	$\mathbf{r}_{ ext{total}}$
1988	Sep 1997	2008	9 yrs	11 yrs	0.088	0.69	0.27

Accelerated data growth scenario

ı	t _l	$\mathbf{t_c}$	t _e	t_c - t_l	t _e -t _c	$\mathbf{r}_{\mathbf{v}}$	r_d	$\mathbf{r}_{ ext{total}}$
	1988	Feb 1997	2001	9 yrs	4 yrs	0.088	0.988	0.45

IMPLICATIONS

Suddenness of the transition may be a key determinant of the outcome

- RBOCs vs. ISPs
 - Who will own the inter-exchange switches / routers?
 - Who will supply inter-office transmission?
 - Who will service the last mile?
- Equipment Vendors
 - What are the implications for the traditional switch vendors?
- What is the Role of Internet Telephony?
 - How fast does it happen? Why?

POLICY CONSIDERATIONS

- **Lagging Revenue Transition**
 - What dangers does this present?
- Local Distribution
- Bundling of Voice and Data
- Decouple regulation of services from regulation of carriage/spectrum

THE POOL TRIPLE

"An uncentralized set of communications systems can function as a single system only if traffic on each network can move through interfaces onto the other networks. The critical requirements are three: the right to interconnect, conformity to technical standards that make interfacing possible, and a directory system."

- Technologies of Freedom (1984) by Ithiel de Sola Pool

9

OUTLINE

- Where are we going?
- What are the issues / drivers?
- How do we get there?

THE PROBLEM IN A NUTSHELL

- Technologies are moving fast
 - Computing customers benefit quickly (price & performance)
 - Communications customers do not
- How do we get the NII onto the curve?
 - How do we keep it there?

VERTICAL COUPLING OF SUPPLY & DISTRIBUTION

- Examples (Radio, television, Cable Satellite, telephone, Newspaper)
- Each information supplier has its own distribution channel / network
 - Similar to gas / water / electricity
- Appliances are tailored to the medium
- Vertical integration of information services / channels / appliances
- Markets are segmented by tightly coupled architectures

TRANSITION SCENARIOS

13

WHAT ARE THE DRIVERS?

- **■** Competition?
- **■** Digitization.
- Virtualization!
 - Software, Software, Software (What enabled competition?)

AN INFRASTRUCTURE TAXONOMY

In fras tructure	والمراجع	Ser. Ser.	,
Cable, Utilities, old AT&T Monopoly			
Radio, TV	✓		
Local access to long-distance telephony			I
	✓		√
Convergence model	✓	V	
Vertically integrated monopoly		√	
Roads, US Mail		V	I
Package Transport (Rail, Air, etc.)	√	√	I

15

TRANSITION SCENARIOS

WHY CGD? –WHAT'S DIFFERENT ABOUT INFORMATION?

			-	Digi	iai i i	unua	memans
		Op. Con.	Salan alion	Fraga Harion	Time ;	Dynan Dynan Chica	Tic the Durice all Calling
Implications	25			7. Tr. 20	Ting.		
Competition & Innovation	√	>					
Generic distribution	√	√	V	\checkmark			
Decoupling supply/ appliances	V	√	\checkmark	√	\checkmark	\checkmark	

17

DECOUPLING - DRIVERS

- Consider the Transportation Network ... Carriage & Content are Decoupled
- Why?
 - To suppliers, distribution is a necessary evil.
- What are the enablers?
 - Packaging Flexibility as to size & shape
 - Brokerage Flexible Sharing (Car, Truck, UPS, Mail)
 - Diversity Safety in numbers

CHALLENGES

- Decoupling Content & Carriage
- Decoupling Appliances & Carriage
- **■** Embracing Diversify and Innovation

19

DECOUPLING CONTENT & CARRIAGE

- To content providers ...
 - Distribution is a necessary evil (today)
- To carriers ...
 - "moving bits" is a commodity business But ... What's wrong with commodities?
- Policy Issues
 - Decoupling content and carriage regulation
 - Market regulation vs service regulation
 - What about natural monopoly?
 - economy of scale vs economy of innovation

CONTENT & CARRIAGE – TECHNOLOGY

Local Distribution – Cellularization

Common basis for telco, cable, wireless solutions

Making spectrum fungible

- Source Coding vs Channel Coding
- SpectrumWare
 - software based wideband processing

Encourage alternative technologies for alternative circumstances

■ Metric: Hz/person

Urban: Enclosed spectrum

Rural: Terrestrial and satellite RF

21

DECOUPLING APPLIANCES & CARRIAGE DARPA

Strategy / Policy Challenge: Why are set top boxes so !@\$# expensive?

- Open market for inter-operable appliances
- Appliance ownership? Distribution channels?

Technology Challenge

- Leverage active technologies, such as Java!
- Accommodate diversity
 - networks, computers, software, etc.
- Configuration management.
 - take it home from the store and it works.

Home Information Infrastructure is substantial.

- CDs, TVs, VCRs, CamCorders, etc. are going digital.
- Ultimately these communicate with each other.

■ The HII will drive:

- Consumer Informatics.
- The reverse channel.
- Residential bandwidth on demand.

EMBRACING DIVERSITY

■ Innovation leads to heterogeneity!

- Each RBOC is planning its own architecture.
- Cable holdings are geographically dispersed.
- Cellular networks are going digital in 4 flavors!

■ Don't fight it — MASTER IT!

- Provide the same look and feel
 - not the same technology.

23

WHAT'S ENABLES ALL THIS? SOFTWARE!

Growth is exponential plot on semi-log scale

Systems are increasingly software-driven

- Software implements conversion / configuration functions.
- Processing ability grows exponentially.
- Cost of diversity / dynamic configuration is in free fall.
- What is the role of (software) standards?

CHANGING THE INFRASTRUCTURE INNOVATION PROCESS

Deployment of new functions driven by hardware vendors and operators.

Driven by users and software vendors.

25

OUTLINE

- Where are we going?
- What are the issues / drivers?
- How do we get there?

WHAT IS ACTIVE INFRASTRUCTURE ABOUT?

Approach to networking that allows each group of users to tailor the shared infrastructure to their requirements

- Ability to dynamically mold (program) the surrounding network infrastructure
- Massive increase in degree, sophistication and control of software deployed inside the network

Infrastructure that can turn on a dime Not just where we go, but how fast we get there!

27

ACTIVE NETWORKS

1.

ACTIVE NETWORKS

- Active in two ways:
 - Network performs user-specific computations on packet data
 - Users supply code that is executed in the switches / routers
- Computation in-line with communication
- Massive increase in degree & sophistication of software deployed inside the network

29

"Pull" => Lead Users

Lead users are inventing ad-hoc strategies to perform computation within the network

- Fire walls
 - Masquerade as routers, but are application-specific...
- Web proxies
 - An increasing fraction of web pages are dynamic...
- Mobile / Nomadic computing
 - Agents, gateways, proxies, routers, etc.

Network-based computation is happening!
We need to deal with it!

"Push" => Active Technologies

- Java is one of many active technologies
- What are they?
 - Mechanisms that allow users to inject custom programs into shared resources
- Where have they come from?
 - Printing Postscript
 - Parallel Processing Active Messages
 - Operating Systems Sandboxing
 - Programming Languages Java, Tcl.
 - Compilers "on the fly" compilation
 - Formal Methods static checking, SCC, etc.

What is new?

Safety, efficiency and mobility now addressed in concert

31

REMAINDER OF THIS TALK...

- Active Networks: What / Why?
- What's Happening at MIT?
- What is All This Good For?
- Work Elsewhere?
- Broader Implications?

Key Players at MIT

- John Guttag (Principal Investigator); Steve Garland (Co-PI)
- David Tennenhouse (provocateur in absentia)
- Graduate Students
 - David WetherallLi-wei Lehman
 - Ulana LegedzaDave Evans

THREE THRUSTS OF MIT'S ACTIVE NETWORK RESEARCH

Making it possible to build active nets

- Ease of programming
- Protection and security
- Efficiency

Understanding opportunities

- Exploiting computation and storage inside the network
- Introduction of many specialized services

Understanding performance issues

- Bandwidth to the host is not the issue
- Useful information to the application is what matters
- New cost / benefit models are required

33

ALTERNATIVE ARCHITECTURES

■ Discrete Approach – programmable routers / switches

- Maintain packet abstraction
- Add "back door" for injecting programs into nodes
- Technology transfer is straightforward

Integrated Approach – based on capsules

- Nodes exchange encapsulated program fragments
- Routers become capsule execution engines
- Capsules also carry embedded data (a la Postscript)

Hybrids

Capsule classes are demand loaded and/or cached

ACTIVE NODE ORGANIZATION

35

CAPSULES ARE GENERALIZED PACKETS

- Capsules don't usually carry the program...
- Carry a description (e.g., a fingerprint) instead
 - Critical that this is more than a name
 - Prevents protocol spoofing

PROGRAMMING WITH CAPSULES

- Basic instruction set
- JAVA
- Arithmetic, branching, stack/heap...
- **■** Foundation components
- JAVA ANTS
- Access to node API / embedded OS
- Demand loading / caching of user components JAVA ANTS
- Soft state
- NTS ANT
- Connections, flows, rendezvous...
- Data caches for web, multi-cast, information fusion, etc.
- Persistent state ?

37

ANTS - ACTIVE NODE TRANSFER SYSTEM DARPA

- **
 - Capsule assembly, transfer & interpretation
 - Java-based
 - Base classes:
 - Capsule, node, protocol, application
 - Status:
 - Just a skeleton; still fleshing out functionality
 - Later recode some portions for performance
 - Parallel work on static checking and resource management

ANTS GLOSSARY

Node

- Host machine or router

Capsule

Generalization of packet

Protocol

- Collection of related capsule types
- Unit of network customization and protection

Application

- Connects to a node on a port
- Uses capsules for customized network service

David Wetherall

Primary designer and implementor of ANTS

30

NODE OPERATING SYSTEM

Hosts user-defined protocols, providing

- Soft-storage, routing, "eval", ...
- Each protocol with its view of the network

■ Protects the integrity of the network:

- Executes untrusted capsule routines
- Limits their resource consumption
 - Still an open research problem

Code distribution

- Some guaranteed present at each node
- Some transferred using code distribution protocol
 - Demand loading, pre-fetching, caching all used
 - Well-suited to flows

WHAT IS ALL THIS GOOD FOR?

ACTIVE RELIABLE MULTICAST (ARM) OARPA

(Li-wei Lehman, MIT)

Novel Features

- NACK fusion / suppression
- Data caching at strategic locations
- Partial multicasting for scoped retransmission

WORST CASE RECOVERY LATENCY

ARM vs. SRM worst case recovery delay (random loss, 1000 nodes, degree 4)

43

TRADING COMPUTATION FOR BANDWIDTH

2.

NETWORK ATTACK TRACEBACK

45

PRUNING / CANCELING PARALLEL QUERIES

WORK ELSEWHERE / RELATED ACTIVITIES

- U. Penn / Bellcore SwitchWare & Protocol **Boosters**
- BBN Smart Packets
- Open Group RI CONVERSANT
- Columbia NetScript
- Georgia Tech CANEs
- TASC PANAMA
- USC/ISI Active Signalling
- UCLA Adaptive Web Caching
- CMU Application-Aware Nets

Enabling Technologies

- MIT Exokernel & VCODE
- U. Arizona Liquid Software
- U. Wash SPIN

DARPA

ACTIVE NETS TESTBED TODAY: THE ABONE

ARCHITECTURAL FRAMEWORK

49

SwitchWare

University of Pennsylvania and Bellcore

- Safe programming languages; guarantees key invariants
- Integration between guarantees and cryptography
- Two-level approach:
 - PLAN: Programming Language for Active Networks
 - Interoperable services

Protocol Boosters Bellcore

- Family of booster modules that can robustly adapt protocols to their environment
- OS and hardware supporting run-time booster insertion/removal and policy decisions

Smart Packets

BBN Corporation

- Packets carry programs implementing extended diagnostic facilities
- Diagnostics customize themselves to platform and report on anomalous network behavior
- Packets encapsulated in Active Network Message Protocol (ANMP) with Router Alert IP Option

CONVERSANT: an Environment for Real-time, Secure Active Networks

Open Group Research Institute

- Java-based, composable building blocks ("graphlets")
- Named graphlets are carried "by reference" and resolved through recipient's trusted and preferred supplier(s)
- Secure, trans-node paths
- Mechanisms and policies for safe manipulation of imported graphlets and for controlled interference among paths

DARPA

NetScript: A Language-Based Active Network Architecture

Columbia University

- Netscript dataflow language for programming Active Network (AN) engines and packet stream processing
- Virtual Active Network (VANs) abstractions define units of management and security
- Programmable nodes: active firewalls, active managers, intrusion detectors, etc.

CANEs: Composable Active Network Elements

Georgia Institute of Technology

 User-network interface based on functions applied to packets:

forward, install state/method, invoke interpreter, etc.

- Functions customized via methods invoked at standard trigger points
- Fast-path optimization for 90% case
- Demonstrate mobility, multicast, other services

52

Protocol on Active Networks for Adaptive Multicast Applications (PANAMA) TASC, Inc.

- Configurable, active multicast protocol
- Self-identifying packets configure node behavior
- Analysis of optimal multicast code/function location

Active Signalling Protocol

USC/Information Sciences Institute

- Support realtime applications in Internet: teleconferencing, distributed simulation
- Essential component of Internet resource reservation:

setup protocol

53

Adaptive Web Caching

University of California, Los Angeles

- Development of self-organizing protocols and algorithms
- Demonstration of self-organizing system design principles in large-scale systems such as Web caching

Resource Management in Application-Aware Networks

Carnegie Mellon University

- Hierarchical resource management provides structured support for diverse collaborating and competing electronic services
- Application and service presence in the network supports application-tailored resource management and quality of service

54

ACTIVE NETWORKS – NUTSHELL SUMMARY

- Packets become "smart" messages
 - Carry code executed inside the network switches / routers
 - Routers are "hollow"
- Move beyond packet switching
 - Leverage computation / storage within the network
 - Network takes on many characteristics of an OS
- **■** Impact
 - New applications
 - Standardize programming model instead of packet format

circuits → packets → capsules

55

INTEROPERABILITY

- Today ... Packet Switching same packet model everywhere
 - Common packet format...the IP Protocol
 - All switches / routers understand this format
- Future...Active Switching same programming model everywhere
 - Common program format...
 - Programs understand packet formats
 - Diversity in message syntax & semantics

CHANGING THE INNOVATION PROCESS OARPA

Conventional nets rely on agreement about services

Standardization a long and wrenching process

Active nets rely on agreement about model of computation

A difficult design problem

Role of network designer

- Make it easy to add network services
- Not to define "right" set of network services

57

THE REAL STORY: ACTIVE / MOBILE CODE

Premise

Java-enabled browsers are (at most) 5% of the story...

How does widespread code mobility change the way we think about very large systems and applications?

Observations

- Opportunity to "invert" organization of many systems, especially those involving embedded processing, sensors, etc.
- Need to revisit many issues in: O.S., compilers, networks, fault tolerance, transactions, information management, etc.

WHAT'S ENABLES ALL THIS? SOFTWARE! OARPA

Systems are increasingly software-driven

- Software implements conversion / configuration functions.
- Processing ability grows exponentially.
- Cost of diversity / dynamic configuration is in free fall.

59

WHY DOESN'T THIS SINK IN?

Traditional Systems Engineering

- Designers strive for homogeneous systems
 - Do the same thing everywhere
 - Streamline interfaces
 - Why? Cost of converters that bridge technologies
 - example: electrical adapters
- We streamline processes as well
 - Supply chain engineering

IMPLICATIONS FOR INTELLECTUAL PROPERTY

- Massive Increase in Rate of Dissemination
 - Diversity of vehicles / forums?
 - Decrease in "atomic unit" of dissemination (?)
- Traditional units of Dissemination Tell a complete story
 - Books and papers
 - Patent filings
- New Units of Dissemination Tell part of a story
 - Individual steps of a proof (e-mail)
 - Scientific protocols via the Web
 - Sequence entries registered in DNA databases
 - Audio / video clip art?

61

User ... I'm trying to do too many things at once.

Computer ... Appearance of doing many things.

Economist ... Transaction costs are plummeting.

- Units of transaction decrease / Freq. increases.
- Example Brokerage commissions.

The (commercial) world is spinning faster!

Increased competition ... Less room to hide.

■ Market is well-informed wrt supply, prices, etc.

Dynamic supply chains.

De-engineering?

BACK UP

63

VOICE/DATA TRANSITION MODEL

TRANSITION MODEL "RESULTS"

65

ARCHITECTURAL FRAMEWORK

Security permeates architecture

ACTIVE NETS TESTBED TODAY: THE ABONE

-

THE ACTIVE IP OPTION – A CHEAP & CHEERFUL PROOF OF CONCEPT

IPv4 / tcl (linux)

Cheap & Cheerful ≈ Quick & Dirty

USING ACTIVE IP

■ node scripting primitives

Packet	Control	Environment			
data	send_ip	node (IP)			
replace_data	reply_ip	time			
source (IP)	discard	host			
destination (IP)	eval [data 0]	mtu			

network discovery functions and more

e.g. trace/ping: reply_ip "[node] [ttl]" if {[node]==[destination]} {discard}

69

NACK BANDWIDTH CONSUMPTION

NACK bandwidth consumption with strategically placed active nodes (loss near source, 1000 nodes, degree 4)

HOPS TO REPAIR A SINGLE LOSS

Hops traversed by repair packets to recover a single loss (random loss, 1000 nodes, degree 4)

71

BENEATH THE INTERNET THE IMPORTANCE OF SHARING

Scenario: User clicks mouse.

Triggers 10 Mbyte transfer. Willing to wait 1/2 second.

Small Organization (5-10 users).

- Need to use 155 Mbps link.
- Alternative buy 1 Mbps link and wait 80 seconds!

Large Organization of the Future.

- 2000 Users, 1 Mbps / user average demand.
- Buy 2.4 Gbps links (added bonus volume discount).
- Up to 15 users can generate simultaneous bursts.
- 50 to 100 fold cost differential.

73

WHAT ABOUT THE LITTLE GUY? RESIDENTIAL ACCESS?

Virtually all channels will be digitized ...

- Cable Modems (HFC)
- FTTN + ADSL
- Wireless Cellular, PCS, TV, DBS...

■ When are resources bound to subscribers?

- startup? subscription time? on demand?
- can idle resources be re-assigned?

Cellularization is a common theme ...

- Terrestrial systems
 - Drive Fiber to the Neighborhood (Shared)
 - Minimize fixed assignment of resources to individuals.
- Satellite systems project cells onto the ground.

THE CELLULARIZATION OF AMERICA

Cellular schemes are modern day party lines ... with fewer of the nasty side-effects!

75

PUTTING THE LAST MILE ON THE CURVE DARPA

What are the cost drivers?

- During startup phase
 - minimize capital costs
 - maximize geographic coverage
- During stable phase
 - drive down operating costs
 - plan on 100% penetration
- Impact of Rapid Innovation
 - new technology has lower operating costs
 - plan for continuous renewal (no stable phase)
- Infrastructure cost vs access bandwidth?

MEGABITS FOR THE MASSES...

Dynamic sharing

- Appearance of speed through dynamic allocation of shared resources.
- Party-line 2000

Heterogeneity

- Mix & match technologies
- Contrast with: do the same thing everywhere.

Virtualization of Channels